-k^2-25-6k=-6k-2k^2

Simple and best practice solution for -k^2-25-6k=-6k-2k^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -k^2-25-6k=-6k-2k^2 equation:



-k^2-25-6k=-6k-2k^2
We move all terms to the left:
-k^2-25-6k-(-6k-2k^2)=0
We add all the numbers together, and all the variables
-1k^2-(-6k-2k^2)-6k-25=0
We get rid of parentheses
-1k^2+2k^2+6k-6k-25=0
We add all the numbers together, and all the variables
k^2-25=0
a = 1; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·1·(-25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*1}=\frac{-10}{2} =-5 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*1}=\frac{10}{2} =5 $

See similar equations:

| 1=10v+521 | | 3(x-7)-2(3x+6)=0 | | -24=6(y+1) | | 30.00t+0.25=59.50 | | y+9*4y-1=2y | | (X+15)+(3x)=180 | | 37x-2=23x+2 | | -3+g/9=2 | | -4(5-3x)=12x-20 | | –2p=–2 | | 42=(13x-5)+(2x+8)=180 | | 23x+2=37x-2 | | -2x^2-6x-7=0 | | Y+2y=44 | | (6n–7)+(8n+2)=23 | | Z+26=2z+2 | | 0.36xx=360 | | 4(2x+4)=5 | | Y=5/4x+27.5 | | 110=(2+6x)+(12x)=180 | | v/10+8=6 | | 3p*9(-4)=60 | | -18=5x-2 | | 2x-3(x+10)+1=-1+2 | | -3.1(3-4m)=-13 | | 13(t+1/3)=15t | | (c+6)(c+7)=0 | | 4x^2+2x−4=0 | | 6+4.4x=6.4x-10 | | x+(5x-5)+(3x-4)=180 | | 9-7x=51` | | (24x+9)(7x-15)=180 |

Equations solver categories